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APPROXIMATE DIRICHLET BOUNDARY CONDITIONS IN
THE GENERALIZED FINITE ELEMENT METHOD

IVO BABUSKA, VICTOR NISTOR, AND NICOLAE TARFULEA

ABSTRACT. We propose a method for treating the Dirichlet boundary condi-
tions in the framework of the Generalized Finite Element Method (GFEM).
We use approximate Dirichlet boundary conditions as in [12] and polyno-
mial approximations of the boundary. Our sequence of GFEM-spaces con-
sidered, Sy, p = 1,2,... is such that S, ¢ HOI(Q)7 and hence it does not
conform to one of the basic FEM conditions. Let h, be the typical size
of the elements defining S, and let w € H™11(Q) be the solution of the
Dirichlet problem —Au = f in ©, v = 0 on 0f2, on a smooth, bounded
domain . Assume that HUM”H1/2(aQ) < Cth”UuHHl(Q) for all v, € Sy,
and |u — urlgiq) < ChMlullgm+1(qy, v € H™H1(Q) N H}(Q), for a suit-
able ur € S,. Then we prove that we obtain quasi-optimal rates of con-
vergence for the sequence u, € S, of GFEM approximations of u, that is,
lv — uullgio) £ CAZ Il gm—1(q)- Next, we indicate an effective technique
for constructing sequences of GFEM-spaces satisfying our conditions using
polynomial approximations of the boundary. Finally, we extend our results to
the inhomogeneous Dirichlet boundary value problem —Au = fin Q, u =g

on 0f.
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1. INTRODUCTION

In the past few years, meshless methods for the approximation of solutions of
partial differential equations have received increasing attention, especially in the
Engineering and Physics communities. The reasons behind the development of
such methods are the difficulties associated to the mesh generation, particularly
when the geometry of the domain is complicated. As in the case of the usual Finite
Element Method, one of the major problems in the implementation of meshless
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2 I BABUSKA, V. NISTOR, AND N. TARFULEA

methods is the enforcement of Dirichlet boundary conditions. It is the purpose of
this paper to address the problem of enforcing Dirichlet boundary conditions in the
Generalized Finite Element Method framework.

The classical Rayleigh-Ritz methods for elliptic Dirichlet boundary value prob-
lems assume that the trial subspace functions fulfill the boundary conditions. Nev-
ertheless, the construction of such subspaces implies many difficulties in practice
when the boundary of the domain is curved. Therefore, several approaches are
known for dealing with the Dirichlet boundary conditions. One approach is to
modify the variational principles by adding appropriate boundary terms so that
there will be no need for the trial subspaces to fulfill any condition at the bound-
ary. See the works of Babuska [2, 3], Bramble and Nitsche [13], and Bramble and
Schatz [15, 16], among others, for examples of how this approach works in prac-
tice. Another approach (used also in this paper) is to use subspaces with nearly
zero boundary conditions. This ideea was first outlined by Nitsche [27] and further
studied by Berger, Scott, and Strang [12] and Nitsche [28].

Yet another approach is the Isoparametric Finite Element Method or IFEM with
curved finite elements along the boundary. See [19] and references therein, or [18],
[20, 22, 23, 24, 29, 30], among many others, for more recent work and applications.
This approach is typically used in connection with a numerical quadrature scheme
computing the coefficients of the resulting linear systems. In the applications of this
method, except in special cases (such as when €2 is a polyhedral domain) the interior
Qp, of the union of the finite elements is not equal to 2, although the boundary of
Qy, is very close to 0€2. That is, the approximate solution uy, is sought in a subspace
Vi, C HE(Q4) and so, the homogeneous Dirichlet boundary condition u = 0 on 92
is “approximated” by the boundary condition up = 0 on 0. In fact, uy is the
solution of a variational equation ap(up,vn) = (fn,vn)n for all v, € Vi, where
ap(+,+) is a bilinear form which approximates the usual bilinear form defined over
HY(Q,)x H(Q2,), and f), € V;* approximates the linear form v, € V), — th fopda,

where f is an extension of f to the set €.

Our approach has certain points in common with the isoparametric method just
mentioned in the fact that we are using polynomial approximations of the boundary.
However, our method does not require non-linear changes of coordinates. Our
method combines the approaches in the papers of Berger, Scott, and Strang [12]
and Nitsche [28]. Our definition of the discrete solution is as in [12], whereas our
assumptions are closer to those of [28]. We have tried to keep our assumptions at a
minimum. This is possible using partitions of unity, more precisely the Generalized
Finite Element Method or GFEM, a method that originated in the work of Babuska,
Caloz, and Osborn [8] and further developed in [6, 9, 10, 25, 26].

Our construction is different from the IFEM in that we do not require compli-
cated non-linear changes of coordinates. Moreover, our method uses non-conforming
subspaces of functions and it does not have to deal with extensions over larger do-
mains. It is closely related to [11] which uses GFEM for elliptic Neumann boundary
value problems with distributional boundary data. The GFEM is a generalization
of the meshless methods which use the idea of partition of unity. This method
allows a great flexibility in constructing the trial spaces, permits inclusion of a
priori knowledge about the differential equation in the trial spaces, and gives the
option of constructing trial spaces of any desired regularity. We mention that the
GFEM is also known and used under other names, such as: the method of “clouds,”
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the method of “finite spheres,” the “X—finite element method,” and others. See the
survey by Babuska, Banerjee, and Osborn [5] for further information and references.

Let us now describe the main results of this paper in some detail. Let Q2 C R"
be a smooth, bounded domain with boundary 9. Let f € L?(2) and u € H?(Q)
be the unique solution of the Dirichlet problem

(1) —Au=f onQ, u=0 ondN.

Assume that a sequence S, C H'(f2) of test-trial spaces is given and define the
discrete solution u, € S, in the usual way: B(u,,v,) = (f,v,) for all v, € S,
(see Equation (2) below). We do not assume S, to satisfy exactly the Dirichlet
boundary conditions, that is, we do not assume S, C H} ().

Let us fix from now on a natural number m € N = {1,2,...} that will play, in
what follows, the role of the expected order of approzimation. We shall make the
following two basic assumptions:

o Assumption 1, nearly zero boundary values: ||vy||g1/290) < Ch ol a1 (a)
for any v, € S, and

o Assumption 2, approzimability: for any uw € H'TH Q)N HL(Q), 0 < j < m,
there exists ur € S, such that [u — us| g1 (@) < ChJ,||lull g (o)-

These two assumptions are formulated in more detail in Section 2.

Under Assumptions 1 and 2, our main approximation result (proved in Section 2)
is the following

Theorem 1.1. Let S, C HY(Q) be a sequence of finite dimensional subspaces
satisfying Assumptions 1 and 2 for a sequence h, — 0 and 1 < p < m. Then
the (unique) solutions u and u, of Equations (1) and (2), respectively, with f €
HP=1(Q) satisfy

v —wullzr ) < OB Nl o) < CREI fll ar-1(0),

for constants independent of u and f.

In Assumptions 1 and 2, h, > 0 is a sequence that goes to 0. Intuitively, h,,
will play the role of the “typical size” of the elements in S,. However, in our
abstract setting, we are not assuming that S, is constructed in any particular way.
Assumptions 1 and 2 are easy to fulfill with a “flat-top” partition of unity and
polynomial local approximation spaces. In Sections 3 and 4 we provide examples
of spaces S, that satisfy Assumptions 1 and 2. In Section 5 we extend our results
to the non-homogeneous Dirichlet boundary conditions case u = g on 0f2.

In this paper, we shall use the convention that C' > 0 indicates a generic constant,
independent of u, which may be different each time when used, but is independent
of the free variables of the formulas.

2. APPROXIMATE DIRICHLET BOUNDARY CONDITIONS

In this section, we give a proof of Theorem 1.1. We begin by fixing the notation
and then we prove some preliminary results.

Recall that 2 C R™ is a smooth, bounded domain, fixed throughout this paper.
We shall fix in what follows m € N = {1,2,...}, which will play the role of the
order of approrimation. We want to approximate u with functions u, € S, u € N,
where S, C H'(Q) is a sequence of finite dimensional subspaces that satisfy the
Assumption 1 and 2 formulated next. Our first assumption is:
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Assumption 1 (nearly zero boundary values). There exists C > 0 such
that

vl 2 00) < Ch vl e (o) for any v, € S,,.
So S,, does not necessarily consist of functions satisfying the Dirichlet boundary
conditions. Let |u|g1(q) := [, [Vu[?dz]'/2. Our second assumption is:

Assumption 2 (approximability). There exists C' > 0 such that for any
0<j<m,any u € H(Q)N H} (), and any p € N, there exists u; € S, such
that

lu—url ) < CW|lull i o)

We now proceed to the proof of Theorem 1.1. We first need some lemmas. Let
Q : HY(Q) — HL(Q) be the H'-orthogonal projection onto the subspace Hg () C
H'(Q) of functions satisfying the Dirichlet boundary conditions. Let Sj) := Q(S,,).

Lemma 2.1. We have that [|[w — Q(w)| g1 () < Ch} w1 (), w € S,

Proof. Let us denote by E : H/?2(092) — H'(Q) a fixed, continuous right inverse
of the restriction (or trace map) H(Q) — H'/2(9Q). That is, we have

(Bv)loa =v and [|Ev| g0y < Cllvll gz o0, ve HY?(09).

We can chose such an extension map E since the restriction H'(Q) — H'/2(9%)
is continuous and surjective. Consider now w € H!(Q) arbitrary. Then wg :=
w — E(wlpn) € HE (), and hence the projection property gives

v —Q(w)||r1() < [lw—wElu (e = [Ewls)lla @) < Cllwloallg1/20)-

If w € S,, Assumption 2 then gives ||w — Q(w)| g1y < Ch|w|mi(q), as
desired. g

In what follows, we shall need the following classical result [1, 17].

Lemma 2.2. For u € HY(Q) there is a constant C that depends only on Q such
that

[ullF ) < CllulF ) + 1ulZ200)] -

From this lemma we obtain that |v, |1 (o) and |lv,| g1 () are equivalent norms
on S, with equivalence bounds independent of s

Lemma 2.3. There ezists C > 0 such that C~*|v,| g o) < vullmr @) < Cloulm o)
for all u large enough and all v, € S,,.

Proof. From Lemma 2.2, we have
||Uu||%11(9) < C[\”u\%l(g) + HUMHQL?(aQ)} < CUUN@P(Q) + ”UH”?qlﬂ(aQ)]
< Cloulin ) + OB lvullin g

where the last inequality is a consequence of Assumption 1. Therefore, for u large,
h,, is small enough and we get

vullie) < C(1 - Chim)_1/2|vu|H1(Q)

which is enough to complete the proof. (I



DIRICHLET PROBLEM 5

Lemma 2.3 allows us now to introduce the discrete solution u, of Equation (1)
using the standard procedure. Let B(v,w) := fQ Vv - Vwdz be the usual bilinear
form. For p large, let us define the discrete solution u, € S, of the Dirichlet
problem (1) by the usual formula

(2) B(uy,v,) = /Qf(x)vﬂ(x)dx, for all v, € S,,.

Let v be the outer unit normal to 92 and dS denote the surface measure on 0.
Similarly, let w,, € S, for u large, be the solution of the variational problem

(3) B(wy,v,) = Oyu(x)v,(x)dS(x), forall v, €5,
o0

where u is the solution of Equation (1). Note that we need Lemma 2.3 to justify
the existence and uniqueness of weak solutions u, and w,,.

Lemma 2.4. Let u be the solution of the Dirichlet problem (1) and let u, and wy,
be as in Equations (2) and (3). Then B(u—u, —wy,v,) =0 for allv, € S,; hence

lu — vy —wulp o) < |u—vulpq forallv, € 8,.

Proof. This follows from the fact that

B(u,v,) = / Vu - Vo,dr = / foudz —|—/ (Opu)v,dS(x) = B(uy + wy,vy),
Q Q o0
for all v, € S,,. O
We now proceed to estimate u, and w,.
Lemma 2.5. For u large, the solution w,, of the weak problem (3) satisfies

(4) lwull @) < Chyllull gz ),

with C' a constant independent of pu and u.

Proof. The relation follows from

i < Ol = CB(ww,) = C [ du(@yu,(2)asia)
< CllovullL2a0) lwpll L2 00) < CllOvullL200) Wil m1/2 (00
< Chp'llull o) lwll 21 (-
Therefore |[w| z1(q) < Chj}||ullg2(q), as claimed. O
Lemma 2.6. For p large, the solution wu, of the weak problem (2) satisfies
(5) lupllm(e) < Cllulla2o),
with C' a constant independent of p and u.
Proof. Let us first observe that Lemma 2.3 and then Lemma 2.4 give
||U/LH§JI(Q) < C|uuﬁ{1(9) = CB(uy,uu) = C[B(u,uu) - B(wwuu)]
= C[B(u,uu) — (Ovu, up)oa] < C[|B(u, )|+ 1(0vu, uu)ool]
< Cllullar @ llupllar @) + Clovull z2o0) 1wl 2200
< Cllullgz@llupll @) + Chi vl gz @) llwll 21 ()

Now it is easy to see that ||u,|l g1y < Cllullg2()- O
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Now we are ready to prove Theorem 1.1.

Proof. We shall assume p = m, for simplicity. The proof in general is exactly the
same. Lemma 2.4 and the projection property, together with Lemma 2.5, give

(6) = uplmr(ey < [u = — wal i) + wulir o)

< |U — ’LL]|H1(Q) + CthUHH?(Q) < ChL"HuHHmH(Q),

where for the last line we also used the approximation property (Assumption 2).
The estimate in the H'-norm is obtained from Lemma 2.2, Equation (6), As-
sumption 1, and Lemma 2.5 as follows

lu = wull ) < Cflu = wlm@) + w2 o0)]
< Chylullgm+r @) + Chlupllar @) < Chillull gmes @)-

The proof is now complete. u

In view of some further applications, we now include an error estimate in a
“negative order” Sobolev norm. We let H~!(2) to be the dual of H!(Q) with pivot
L%(Q). Since Q is a smooth domain, H~!(Q) can also be described as the closure
of C>°(£2) in the norm

() 20|
(7) ull -1 (@) = sup ~—r
o0 9llm )

(Note that, in several other papers, H~!(2) denotes the dual of H}(2).)

Theorem 2.7. Let0 <1, 1<p, andl+p+1 < m. Then, under the assumptions of
Theorem 1.1, the solutions u and u,, of Equation (1) and Equation (2), respectively,
satisfy

lu = wll 10y < ChFPHH [l oo,
for a constant C > 0 independent of u and f € HP~(Q).

Proof. The proof of this theorem is an adaptation of the usual Nitsche-Aubin
trick. Indeed, let us denote by F € H'*2() the unique solution of the equation
—~AF = ¢, F = 0 on 09, for ¢ € H'(Q) arbitrary, non-zero. Then there exists
a constant C' > O, independent of ¢, such that ||F||gi+2iq) < C|@l|giq)- By
Assumption 2, there exists F; € S, such that |F' — Fr|g1q) < ChLHHFHHHz(Q).
An easy observation, which will be used later, is that

(8) |Fr| () < ChLHHFHHLH(Q) +1F 1) < Cllélai o)
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Using Lemmas 2.1, 2.5, and 2.6, together with Assumptions 1-2 and (8), we
obtain

[(u —wuy, @) L2l Bu—u,, F)+ u,,0,FdS
i 2oy = sup (el [BO =t DDt g 00 PS
$#0 91l () $#0 91l 2 ()
<sup |B(U—UN,F—FI)| + sup ‘B(U);MFI” + Sup’faﬂuuaz/FdS’
T $#0 Al e () 620 Bl i) 620 Bl
< sup lu — wul )| F — Filmi o) lwul )| F1l ()
90 91l e (02) $#£0 91l 1 ()
4 osu 1wyl L2 00) 100 Fl L2 (00)
$#0 H¢||HI(Q)

< CRH  ull goery + Chlullgzy + Chullrzq)
< Chﬁ+l+1||u||Hp+l(Q),

by the assumption that p+1+1 < m. O

3. THE GENERALIZED FINITE ELEMENT METHOD

Our goal is to construct a sequence S,, u = 1,2,..., of Generalized Finite
Element spaces that satisfy the two assumptions of the previous section. To this
end, we shall introduce a sequence of Generalized Finite Element spaces that satisfy
certain conditions (Conditions A(h,), B, C, and D). In the following sections we
shall prove that these conditions imply Assumptions 1 and 2.

We begin by recalling a few basic facts about the Generalized Finite Element
Method [5, 10, 26]. This method is quite convenient when one needs test or trial
spaces with high regularity.

3.1. Basic facts. Let k € Z;. We shall denote as usual

\U|kaoc(9) = ali’;HaaUHLm(Q), ||U\|kaoo(n) = mz}i”aauHL“(Q)a

|

\
WE=(Q) = {u, |lullwre) < oo}, and [[Vwllwre(a) = 2, [0jwllwre(. In
particular, |ulyo.0q) = [[ullwo.=(0) = l|lullL=(a)-

We shall need the following slight generalization of a definition from [10, 26]:

Definition 3.1. Let 2 C R" be an open set and {wj}évzl be an open cover of €2

such that any x € Q belongs to at most x of the sets w;. Also, let {¢,} be a partition

of unity consisting of W™>°({2) functions and subordinated to the covering {w;}

(i.e., supp ¢; C w;). If

(9) 10° 65l L= (@) < Cr/(dlamw;)*, k= |a| <m,

for any j =1,..., N, then {¢;} is called a (x,Co, C1,...,Cy) partition of unity.
Assume also that we are given linear subspaces ¥; C H™(w;), j = 1,2,...,N.

The spaces ¥; will be called local approximation spaces and will be used to define
the space

N
(10) S = Sarpm = {3 du5, v; € U5} € H™(Q),

Jj=1
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which will be called the GFEM-space. The set {w;, ¢;, ¥;} will be called the set of
data defining the GFEM-space S. A basic approximation property of the GFEM—
spaces is the following Theorem from [10].

Theorem 3.2 (Babuska-Melenk). We shall use the notations and definitions of
Definition 8.1 and after. Let {¢;} be a (k,Co,C1) partition of unity. Also, let
v; € U; C HY(wy), Uap := Zj o;v; €5, and d; = diamw;, the diameter of w;.
Then
v = taplF20y < KCG Y llu—vjli2(,) and
J
(11) 02” 2
1 U*Uj”m( )
IV = tap) iy < 263 (g + GV = v)lage,)
J

3.2. Conditions on GFEM data defining S,,. Recall that w is star-shaped with
respect to w* C w if, for every x € w and every y € w*, the segment with end
points z and y is completely contained in w. Also, recall that we have fixed an
integer m that plays the role of the order of approximation. Let {w;, ¢;, ¥, }é\le
be a single, fixed data defining a GFEM-space S, as in the previous subsection,
and let 3 := {wj, ¢;, ¥;,w:}, where w; is star-shaped with respect to w} C w;. We
shall need, in fact, to consider a sequence of such data

sy N,
(12) Xy = {W;'Lvd)?a qj?)wj#}jzllv peEN,
defining GFEM-spaces S,

NP'
(13) S, = {qugvj, v € \IJ;‘} C H™(9),
j=1

such that there exist constants A, C;, o, and x and a sequence h, — 0, as  — oo,
for which ¥, satisfies Conditions A(h,), B, C, and D below for p € N.

Condition A(h,). We have that Q = U;-Vz“lwf and for each j =1,2,..., Ny, the
set w}‘ is open of diameter dg <h, <1 and w;‘“ C wé‘ is an open ball of diameter

> crd;‘ such that w;-L 1s star-shaped with respect to w;“.

Notice that we only assume the open covering {w]“} to be nondegenerate, a
weaker condition than gquasi-uniformity (see [17], Section 4.4, for definitions and
more information on these notions).

Condition B. The family {gb; ;\21 is a (k,Co, C1,...,Chn) partition of unity.

The following condition defines the local approximation spaces \IléL . To formulate
this condition, let us choose z; € wT‘ N 0L, if the intersection is not empty. We

can assume that linear coordinates have been chosen such that z; = 0 and the
tangent space to 9 at z; is {#, = 0} = R""!. For h, small, we can assume

that wT‘ N 0N is contained in the graph of a smooth function gj*-” R S ROIE
x = (z1,Z2,...,2T,) € R", then we shall denote 2’ = (x1,72,...,7,_1) € R"7} so
that z = (2, z,,). Let qf :R" ! — R be a polynomial of order m such that

(14) [gh(2") = gf (2")] < C(d;‘)"”‘1 and
Vgl (2') = Vgj (@) < C(d)™ forall (2/,z,) € wh.
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This condition is satisfied, for instance, if 9g}'(0) = 9%¢} (0), for all |a] < m. In
this case, the m-degree polynomial q;-‘ :R"~! — R is uniquely defined by the afore
mentioned requirement.

Next, denote by ijf : R™ — R"™ the bijective map

(15) T(2) = B2 n) = (@0 + (7).
Let us denote by Py the space of polynomials of order at most k in n variables.
Condition C. We have ‘Ilé‘ =P, if@ﬂ 00 = 0 and, otherwise,
U ={po(g)~", p € Pm, suchthat p(z’,0) =0},

where ¢} are polynomials satisfying Equation (14) with a constant C' independent
of j and pu.

13

An equivalent form of the condition “p € P,,, p(z’,0) = 0”7 is “p = x,p1,
p1 € Pm—1,” because any polynomial vanishing on the hyperplane {x,, = 0} is
a multiple of z,. Since (¢})~"(¢',2n) = (¢, 2z, — ¢} (2')), we obtain p(z',z,) =
(o0 — ¢(@)pr o (@)

Condition D. We have qﬁé‘ =1on w;“ forallj=1,..., N, for which wifﬂaﬁ £ 0.

The constants C;, o, and x will be called structural constants. Note that we
must have N, — 0o as 1 — 00.
The above assumptions are slightly weaker than the ones introduced in [11]. For

instance, Condition C implies the following propety (which is similar to Condition
C in [11])

For any w € WY, any 0 <1 <m+1, and any ball w* C W of diameter > ody.

(16) [0l ety < Cllwll g we).

For further applications, we shall also need a variant of the spaces S, in which no
boundary conditions are imposed. Recall the functions qé‘ used to define the spaces

Y. Let \115 = \Ilgb if w; does not touch the boundary 9Q and \TJ;‘ = {po (qf)—l, pE
P} otherwise, (the difference is that we no longer require p to vanish when z,, = 0).
We then define

NP'
(17) S, = {Zgz)gfuj, v; € \i/;.‘} c H™(Q).
j=1

We shall also need the following standard lemma, a proof of which, for s € Z,,
can be found in [11]. For s > 0 it is proved by interpolation.

Lemma 3.3. Let ¢); be measurable functions defined on an open set W and s > 0.
Assume that there exists an integer K such that a point x € W can belong to no
more than t of the sets supp(y;). Let f = > 4;. Then there exists a constant
C > 0, depending only on k, such that ||fH%{S(W) <C3; H’(/Jj”%{S(W).

Recall that d denotes the diameter of w/'. Let us observe that Condition A(h,,)
implies the following inverse inequality.
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Lemma 3.4. There exists C > 0, depending only on o, such that

(18) ||P||Hs(w;) < C(d?)T_SHPHHT(w;%),

for all0 <r <s<m, all j, all u, and all polynomials p of order m.

Proof. The proof of this lemma is inspired from the proof of (4.5.3) Lemma of [17].

Consider p and 1 < j < N, arbitrary, but fixed for the moment. Let
1 1

oF = r—af), v ewl}, o=

= { 7
J dé{ J J d;_‘

(‘T - xl;)a T e w;uh

where z/ is the center of the ball w}".

If p € Py, is a polynomial of order m, then j is defined by p(z) := p(djz + z¥)
for all #. Observe that the set P, := {p : p € P,,} is nothing but the set of all
m-~degree polynomials in Z. Clearly,

(19) Plareon) = (d?)k_n/2|P|Hk(w;)v for 0 <k <m.

We first prove (18) for the case 7 = 0. Since P,, is finite dimensional, we have
by the equivalence of norms on the unit ball B(0,1) that
(20) 19l e+ (B(0,1)) < ClIBllL2(B(0,1)), for any 0 <k < m,

where C' > 0 is a constant that does not depend on k, j, and p. From Condition
A(h,), we obtain that

(21) 1Bl (B o.1)) < CllPll 2 o)

where C' > 0 depends only on the structural constant o. From (20) and (21), it is
clear that

1Bl @y < Cllpllr2@ry VP € Pun
where C' > 0 depends only on o. Therefore, (19) implies
Pl oy (@572 < Clpll 2 (@) ™2 for 0 <k <s,
from which we deduce that
[Pl s (ory < C@)) FIpll g2y for 0<k <s.
Since dé‘ < h, <1, we have
(22) 1Pl ety < C(dF) "Il 2oy
which is just (18) for » = 0.
Let us now analyse the general case 0 < r < s < m. For |a| = k, with s —r <
k <s, D*p= DPD"p for || = s —r and |y| = k + 7 — s. Therefore,
1DPllz2(wry S ID"Pllare=r(wr
<@y D Pl (by (22))
< C(df)"Iplpesr—s ()

Since

Iplak ) = Y 1Dl 2w,
|| =k
we obtain that

‘p|Hk(w;f) < C(d?)r_s|p|Hk+r—s(w;‘) for s —r <k <s.
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This implies that

(23) [Plare (e < C’(d?)’“*5||p||Hr(w;+) for s —r <k <s.

From (22), we also have

O ol < O bl < CEY Ipllrwr

Combining (23) and (24) gives (18) and this ends the proof of the lemma. O

4. PROPERTIES OF THE SPACES S,

In this section, we establish some properties of the GFEM spaces S, 1 € N,
defined in Equation (13) using the data ¥, = {w}, ¢, ¥, w* ;V:“I satisfying condi-
tions A(h,), B, C, and D introduced in the previous section for h, — 0. The main
result is that the sequence S, satisfies Assumptions 1 and 2 of the first section.

Hereafter, for simplicity, we will omit the index p whenever its appearance is
implicit.

Let us fix j such that @;NdQ is not empty. Recall the functions g;,¢; : R"™* — R
defined in the previous section. So, for i small, @;NO is contained in {(z’, g;(2"))},
the graph of the smooth function g; : R*~! — R (this may require a preliminary
rotation, which is not included in the notation, however, for the sake of simplicity).
Let ¢; : R™ — R”™ be the bijective map defined by Equation (15). Similarly, let

(25) gj(x) = g;(a,n) = (2, 20 + g;(2)).
Then §; maps R"™! to a surface containing w; N 9§2. We have g;l(a?) = (¢, 2, —

g;(x')) and G5 ' (z) = (a', 2y — q;(a")).
We shall need the following estimate.

Lemma 4.1. For any polynomial p of order m, we have
lpog;t —pod; 2w, < Cdf* pllaw,) and
lpogit —pod; lutw,) < CdflIpllat )
where C' is a constant independent of p, 1, and j.

Proof. By Taylor’s expansion theorem in the x,, variable, we have
po gj_l(z’,xn) =p(a’,x, — gj(@")) = p(2', zn) — gj(x")Opp(2’ 20) + ...

(! \E (Al \m
+ (1) (]f' S o )+ + (—1)m93(ﬂ“;,) o p(a’ )

and

pod; (2’ xn) = p(a’, 2 — q;(2)) = p(a’, 20) = 4;(2")Oup(a’, wn) + . ..

(\m
O’ )+t (1 L ot ),

Then,

o (@ m) ~ po iy (@ m)| = ple’, 2, — g,@") P - 4,(a")
gi 1,/ k _ q x’ k
< oy (@) - gy up ) 4. S )

g;(@)™ — ¢; (@’ m
i G ot ).

| - \3§p(x',xn)| + ...
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From this and the Cauchy—Schwartz inequality, we obtain

pog; (@, an) —pod; (2’ xa)l* = Ip(a’, 2 — gj(2") — P, 20 — g5 (2")) [

(g;(z")* — g;(2")")
(k1)?

(g; (&)™ — q;(=")™)
(m!)?

Notice that |g;(z")| < dj, for all (2/,2,) € wj;, and because ¢;(z') = g;(2') +

O(d), for all (2, z,,) € wj, we have

2
< ml(g;(2") = q; (")) Onp(a’, a0)? + ... + ap(a’,n)® + ...

2
+ anp(a’,xn)?).

2 m
(952" ~a;(a")*)" = g} (a)~(g; (") +O(@F )P < O™, for k=1,...,m,
which in turn implies that
Ip ogjl(x', Tp)—po (j;l(:v’, x,)* < Cdi(mﬂ)[anp(x', xn)? + dOnp(a  xn)? + .
+ di(k_l)aﬁp(x’, )2 ..+ di(m_l)aflnp(x’, z,)?].

By using the inverse inequality d§71||p||Hk(wj) < Clplla(w;), we get

lpog;' —=pod; izwy = [ Iped; (@ an) —pod; ' (z/,2n)da' duy
wj
k_
< cd;mrY / [Onp(x’, 0)? + d202p(a’, 20)? + ...+ d V(e 2) +
wj

+ d?(m_l)azlp(x', x,)%]dx’ dz,,
2(m+1 2(k—1 2(m—1
< CA " I pl gy + -+ TV Pk o GV Dl )
2(m-+1
< Cd ™ Vplin ).
and this completes the proof of ||p o gj—l —po (jj_l“Lz(wj) < C’d;”+1||p||H1(wj).

The proof of ||po§j_1 —pO(jj_lnHl(wj) < Cdj||pll f1(w,) is reduced to the previous
inequality as follows. First, from the inverse inequality d;||p|l a1 (w;) < CllpllL2(w;)
we obtain
(26) lpog; ' —pod; 2w, < CdlIpllr2(w,)-

It is then enough to show that
(27) 10k(pod; ") = k(o d; 2w, < CdiIplla (),
forall k=1,2,...,n.

The case k = n is easier, so we shall treat only the case when 1 <k <n-—1. A
Taylor expansion with respect to the x,-variable gives

O(pog; )@, n) = O (p(a, 2 — g;(2")))
= (Owp) (2", 20 — g5 (@) — Og; (") (Onp) (@', n — g;(2"))
and
O(pod; ') (@' xn) = Op(p(a', 20 — ¢j(2')))
= (Okp) (2", 2 — qj(2")) — Orq;(2")(Onp) (', 2n — gj(2"))
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Equation (27) then follows from Equation (26) and from the estimates g;(z') =
gi(2") + O(dTH), Oqj(2") = Ogj(2') + O(d]") and |g;(2")| < d; for (2/,2,) € w;
(see Equation (14) and Condition C). O

Remark 4.2. Let us observe that Condition A(h,) was used implicitly in the proof
of Lemma 4.1 when we used the inverse estimates d;?*l”pHHk(wj) < Clipll e (w;)-

Remark 4.3. If (14) is replaced by the more restrictive condition [0%(g; — ¢;)| <

C’d;nﬂ_‘al, for all |a] < m+1, then the result of the above lemma can be extended
as follows: For any polynomial p of order m, we have

lpog;t —pod; e < Cdf™ > pllai ) s=0,....m+1,

where C' is a constant independent of p, u, j, and s.

Corollary 4.4. Letp € P,,, then

~—1 ~—1
165 (pog; " —pod; ), < Cd Il w,)-
If p € Py, also vanishes on {z,, = 0} then we have
1650 & ss2om < O [Pl -
Here C is a constant independent of p, u, and j.

Proof. Using Lemma 4.1 and Assumption B, we obtain

lps(pod; ' —pod; Marw) < I¢illLewyllpod;y —ped llaw)
+ (E?=1||ai¢j||mc(wj))||p°§j_1 —po (L_lHL?(wj)
< CdJ|Ipll () + Cd; 7 Dl (o)) < CdF Dl ()

The last part follows from the first part of this corollary, which we have already
proved, and from the fact that ¢;(po gj—l) =0 on 909Q. Indeed,

65 (po @ im0y =6 (pod; " —pod; )lman)
<Clgi(pog; ' —pod; N =Cldj(ped; ' —pod; )l w,)
< Cdipllaw,) < Cdi*llplla )
The proof is now complete. ]

We are ready now to prove that Assumption 1 is satisfied by the sequence of
GFEM-spaces S,, introduced in Subsection 3.2.

Proposition 4.5. Let S, be the sequence of GFEM-spaces defined by data ¥,
(Equation (12)) satisfying conditions A(h,), B, C, and D. Then the sequence S,
satisfies Assumption 1.

Proof. Let w; € \117 and w =) ¢;w; € S,,. Since we are interested in evaluating w
at 09, we can assume that only the terms corresponding to j for which @; N9Q # 0
appear in the sum. Then w; = p; o d;l, for some polynomials p; € P, vanishing
on {x, = 0}. Hence Lemma 3.3 and Corollary 4.4 give

||w||§11/2(ag) < CZ ||¢jwj||§11/2(ag) < CZ l[¢5(pj o ‘jj_l)H%rlm(aQ)
J J

<OY Al sy < Ch™ D il sy < CRE™ D llwslli ws)-
J J J
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By Condition D, 3=, ||wj||§11(w;) = ||w||?{1(Uw;_,). Therefore,
||w||§11/2(asz) < Chimllwllélwp < Ch™ [[w]|7 -

Assumption 1 is hence satisfied by taking square roots. O

Remark 4.6. Condition D is only needed in the proof of Proposition 4.5. Although
one can prove that

2 2
(28) Z ||wj||H1(wj’f) < C”wHHl(Q)
J
(by using norm equivalence in finite dimensional spaces), one can not bypass Con-
dition D because the constant C' in (28) depends on p. To remove this dependence,
one would have to impose additional and/or different conditions on the partition
of unity.

The proof that the sequence S, also satisfies Assumption 2 is also based on
the above lemma and on the following result. Recall that the local approximation
spaces W; and W/ were defined in Subsection 3.2.

Lemma 4.7. Let u € H™ ' (w;). Then there exists a polynomial w € \iff such
that ||u — w”Hl(wj) S C’d;n||u||Hm+1(wj) and ||u — wHL2(wj) < Cd;n+1|\u||Hm+1(wj)
for a constant C' independent of u, p, and j. If u =0 on W; N OSKY, then we can
chose w € \Ify

Proof. We are especially interested in the case when u = 0 on @; N 0€2, so we shall
deal with this case in detail. The other one is proved in exactly the same way.

Let us consider v = wo g;. Since g; maps R"™! = {z,, = 0} to a surface
containing w; N 02, we obtain that v = 0 on R"~!. For h,, small enough, we can
assume that gj_l(wj) lies on one side of R~ Let U be the union of the closure of
g; ' (w;) and of its symmetric subset with respect to R"~*. Define v; € H'(U) to
be the odd extension of v (odd with respect to the reflection about the subspace
R"1). Let p; be the projection of v; onto the subspace P, of polynomials of
degree m on U. This projection maps even functions to even functions and odd
functions to odd functions. Hence p; is also odd. In particular, p; = 0 on R* 1.
We also know from standard approximation results [17] that

lvr = Pl vy < Cd o]l gmar (-

Then
lw—p1 0G5 i, < Cllvi = pillm wy < Cd vl g vy < Cd|ull g o)
Let w=mpio0 cj;l. The lemma follows from

lu = wll gt (wy) < llu=pro gy e +lp1ogyt —p1od; e,

< Cdj*l[ull am+i(y) + Cdf P11 o) < Cdf l[ull msa ey,

where we have used also Lemma 4.1.

To prove the relation |[u — w[z2(,,) < CdT+1||u||Hm+1(wj), we first notice that
Poincaré’s inequality gives

o1 = p1ll 2wy < Cljllvr = pallar )y < CdJ v s v

The rest is exactly the same. [
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We are ready now to prove Assumption 2. See [5], section 6.1, and [11] for related
results.

Proposition 4.8. The sequence of GFEM spaces S,, satisfies Assumption 2.

Proof. We proceed as in [11], Theorem 3.2. Let u € H™(Q). If &; does not
intersect 052, we define w; € ¥; = Pp, to be the orthogonal projection of u onto Py,
in H'(w;). Otherwise, we define w; € ¥, using Lemma 4.7. Then let w = > ;.
By using Lemma 4.7, the definition of the local approximation spaces ¥, (Condition
C), and the bounds on ||V¢;| e~ (Condition B), we obtain

|u_w|H1(Q):{ Z¢j(u_wj)‘H1(Q)
J

<D (I5llnee fu = wjl oy + V51l 1w = w5 22 )
J
< Z (Cd;ﬁHuHHmH(wj) + Cd;ld?lJrlHuHHmH(wj)) < C'lithHuHHmﬂ(Q).
J
This completes the result. O

5. NON-HOMOGENEOUS BOUNDARY CONDITIONS

In this section we provide an approach to the non-homogeneous Dirichlet bound-
ary conditions. That is, consider the boundary value problem.

{—Au: f onQ,

29
(29) u=g on 0f.

Our approach it to reduce again to the case g = 0 and then to use the results on
the homogeneous Dirichlet problem (1). In a purely theoretical framework, this is
achieved using an extension G of g and then solving the problem —Aw = f 4+ AG,
w = 0 on 9. The solution of (29) will then be u = w + G. This gives that
the problem (29) has a unique solution v € HPT1(Q) for any f € HP~1(Q) and
g € HY?tP(9Q) and it satisfies

ull o1y < C(1f Il zo-1(0) + 91l 17240 (002))

for a constant C' > 0 that depends only on Q and p € Z. (This result is valid also
for p=0.)

In practice, however, we need to slightly modify this approach since it is not
practical to construct the extension G (this is especially a problem if g has low
regularity, that is, if g is a distribution, for instance). We will be looking therefore
for a sequence Gy, of approximate extensions of g.

The construction of such a sequence of approximate extension as well as the
analysis of the resulting method are the main results of this section. Other methods
for constructing Gy, are certainly possible. We begin with an axiomatic approach,
postulating the existence of the sequence G, k € N. Let 1 < p < m. We consider
a sequence Gy, satisfying the following assumption. Recall that the spaces S D Sy,
were defined in Equation (17) and are variants of the spaces Sy that are not required
to satisfy, even approximately, the boundary conditions.

Assumption 3 (approximate extensions). We assume that there exists a
constant C' > 0 such that, for any g € H™t1/2(9Q), there exists a sequence
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Gy € gk such that ||Gkloa — gHHl/Q(SQ) < Ch?HgHHm‘*'l/"‘({)Q) and ||Gk||Hm+1(Q) <
Cllgll grm+1/2 (00 -

We now check that it is possible to choose Gy € S satisfying Assumption 3.
Indeed, this is the case since Assumption 3 is satisfied if the other assumptions and
conditions are satisfied. We follow the method in [4].

Proposition 5.1. There exist continuous linear maps I, : H™T1(Q) — Sy, such
that

(30) lu = In(w)| () < CRE 7 ful| rmer @),
forr=0andr=1.

Proof. For uw € H™1(Q) and j fixed, let v = wo g;. The Taylor polynomial of
degree m of v averaged over §~!(w;) is given by

(31) B = Qo) = [ Quun@® )y

where

ol

n 'U(a)
Qyun() = U(ZJ)"’Z 0w (y)(wi—yi)+.. .+ Z ) (=), al=a1!l...ap,
i=1

|a]=m

is the Taylor polynomial of v at y of degree m and ®; € C°(§~*(wj;)) is a function
with integral 1. Then, by the Bramble—Hilbert Lemma, we have

(32) v — Pj|H5(§*1(w_7~)) < Chgﬂrl_s|U‘Hm+1(gf1(wj)), forall 0 <s<m+1.

Consider w; := Pj o q~j_1 € \ilj. Let w := Zj ¢;w;. Then,

(33) Ju—wlf (@) <C Y 10j(u—w)iq) < O 1o5(u—w)lipr )
J J

r

S CZ Z ‘¢]|I2/V7‘*°°(UJJ)|U - wj|il7‘_i(wj')
0

j o=
< CY D Nslivecequplle = Pro gy iy + 1P 085t = Pro ;i)
j =0
By changing variables and (32), we obtain
(34)
|u - Pj ogj_lﬁfr—’?(wj) = |’U © g]—l - Pj ogj_l‘?{’“_i(wj) < C|U - Pj|i[r—i(gj—1(wj))

2(m4+1—r+1 ~
) =Chy 0 gjlhimes (510

< O T s )

< Ohi(m+1—r+i)|v|§{m+l(

g7 (w;

Also, from Lemma 4.1 and the definition (31) of P;, we have

~— ~— 2(m~+1—r—+2
(35) |Pj 9] gj - Pj (e} qj 1|§_Ir—i(wj) S Ohk( )||Pj||2H1(UJj)

2 1—r+1
< Ch" T ul| g -
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From (33), (34), (35), and Condition B, it follows that
(36)

r

—2ir1.2(m~4+1—r+1 2(m—+1—r+1i
fu—wligr oy < €YD b ™l oy + BTl )
j =0
2(m+1—r 2(m+1—r
SC’hk( * )Z”uH%Im*l(wj) SCHhk( * )||u‘|%{m+l(ﬂ),
J

forall0 <r <m+ 1. }
Define Iy, (u) := w. Clearly I is a linear map from H™*1(Q) to Sj, which satisfies
(30). This ends the proof of the proposition. O

Remark 5.2. If we assume the stronger condition stated in Remark 4.3 on the m-
degree polynomial ¢;, then the conclusion of Proposition 5.1 is valid for 0 < r <
m + 1 (the proof being exactly the same).

From this proposition we obtain right away the Assumption 3.

Proposition 5.3. For any g € H™/2(0Q) there exists a sequence Gy € Sk
satisfying Assumption 3.

Proof. Let us chose G € H™(Q) extending g, |G|l gm+1(0) < Cllgllgm+1/2050),
with C independent of g. Then choose Gy = Ix(G), with I as in Proposition
5.1. ([l

Let wy, be the solution of
(37) —Awg = f+ AGy on Q, wp =0 on 99N.

Also, let (wg), € S, be the discrete solutions of this equation, namely, the
solution of the discrete, variational problem

(38) B((wk)u,v) = (f + AGk, v)12(0), v € Sy,

where f € H™71(Q) is the data of Equation (29).
The main result of this section is the following theorem.

Theorem 5.4. Suppose Assumptions 1 and 2 and Conditions A(h, ), B, C, and

D are satisfied. Let uy := (wg)i + Gi € Sy.. Then there exists a constant C > 0
such that the solution u € H™1(Q) of Equation (29) satisfies

lu = urll ) < ChE ([ flm—1() + gl gm+1/2(00))-
Proof. We have that vy := wy, + G}, solves the boundary value problem
—Av, = f on Q, v = G on 0N

Hence the difference v — vy solve the boundary value problem A(u — vg) = 0,
(u—wvg) = g — Gy on 9Q. From this and Assumption 3 we obtain

(39) lu—vkllar ) < Cllg — Gillgi/200) < Chi'llgll amei/200)-
Theorem 1.1 and Assumption 3, which is satisfied by Proposition 5.3, then give
vk = wrllmr (@) = lwe = (we)kll a2 @) < ORI + AGk| gm-1(0)
< Ch (1 f lerm-1(0) + 1Grllgm+1(0)) < CRE (I flm-1(0) + 9]l m+12(00)) -
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Hence
(40) e — urllr ) = llwr = (wi)ellzr @) < CRE (I F lam-1@) + 9]l mms1/2(00)) -

The result follows from Equations (39) and (40). O

6. CONCLUSIONS AND COMMENTS AND FURTHER WORK

We now summarize our main results and compare them with those of Berger,
Scott, and Strang [12] and Nitsche [28]. We also discuss the mixed Dirichlet-
Neumann problem and suggest some further work.

6.1. Conclusions. Let S, u € N, be the GFEM spaces associated to the “flat-
top” data X# = {w;,¢?7\11?7w;“};y="1 as in Subsection 3.2. In particular, they
satisfy the conditions A(h,), B, C, and D, for a fixed set of structural constants
A, Cj, o, and k and h, — 0. (The parameters h,, are the sizes of the patches w;.)
We know from [11] that it is always possible to find a sequence like that, because
Q is smooth.

Let u, € S, be the discrete solution of the Dirichlet problem (1) (i.e., —Au = f,
u = 0 on the boundary of the smooth, bounded domain €2). That is, u,, is given by

Equation (2). Then we have

Theorem 6.1. The sequence S,, satisfies the Assumptions 1 and 2 and hence
o~ sy < OB s,

where C > 0 is a constant that is independent of u and f € H™ ().

We therefore obtain quasi-optimal rates of convergence for our approximate so-
lutions u, € S, in the sense that the error estimate has the same order as the best
approximation in the spaces S,,.

The definition of the discrete solution u, is as in [12]. In that paper, Berger,
Scott, and Strang obtain for m > 3/2 the estimate
(41)

u— ey < © (30— ey + u— upllamey sup LWE@))
P =& e, @ wHEm ) es, Tvllae)
Our result is thus an extension of the result of [12] to the case m = 1, to which the
methods of that paper do not seem to apply. The case m > 3/2 seems not to be
enough to provide optimal rates of convergence directly.

The definition of the discrete solution w, € Sy in Nitsche’s paper [28] is such
that (Aup + f,vy) = 0 for all v, € Sy, so it is different from ours. In addition to
our approximability assumption (Assumption 1), in [28], Nitsche also requires an
approximation property at the boundary and [Jul|z1(90) < Ch™7||ul|g1(q) instead
of our Assumption 2. These assumptions, slightly stronger than ours, also lead to
optimal rates of convergence.

As in the isoparametric methods, our method uses polynomial approximations
of the boundary. However, we do not have to use non-polynomial approximation
functions of non-polynomial changes of coordinates.
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6.2. Mixed boundary value problems. Let us comment now a little on the
mixed boundary value problem:

(42) —Au=f inQ, wu=0 on dpQ, and g—z =0 on Oy,
where 012 is the disjoint union of the closed subsets dp) and dn€). In particular,
both 9pQ and In§2 will be closed surfaces. In case Op€ is empty (the Neumann
problem), we require our approximation spaces S,, to be such that fQ vy(z)de =0
for all v, € 5,,.

Then our results remain the same if we consider the following variant of our
Assumptions 1 and 2, in which 09 was replaced with dpQ.

o Assumption 1m: |[vullgi20,0) < Ch vl i) for any v, € S, and
o Assumption 2m: for any u € H'T1(Q), 0 < j < m, u = 0 on dp 2, there
exists uy € Sy, such that |u — ur|g1 () < Chd||ullgit1(q)-

The definition of discrete solution u,, is the same as before: u, € Su is such that
(43) (V(u—u,),Vv,) =0, forallv, €S,

An inspection of our arguments used in the proof of Proposition 4.8 shows that,
if only Conditions A(h,) and B are satisfied, then we can take S, = {u, €
Sy, Jquu(x)dr = 0}. The analog of Theorem 1.1 then follows as before.

Theorem 6.2. The (unique) solutions u and w, of Equations (42) and (43), re-
spectively, with f € HP=Y(Q) satisfy

v — vl ) < OB ull o) < CREN fll ae-1(0),
for constants independent of u and f.

Let us observe that for the mixed Dirichlet-Neumann boundary conditions, Con-
ditions C and D can be weakend by replacing 092 with dp{2. Thus, in the case of
pure Neumann boundary condition case, Conditions C and D are not required.
However, in the analysis of elliptic boundary-value problems with mixed Dirichlet
and Neumann boundary conditions, the Conditions C and D have to be considered
only for the indices j corresponding to the patches w; that touch the portion of the
boundary on which the Dirichlet boundary conditions are imposed. See [4, 5, 11]
and references therein for more information on meshless methods for Neumann
boundary conditions.

6.3. Further problems. In spite of all these differences in assumptions and defi-
nitions between [12, 28] and our paper, the main issue seems to be providing simple
examples of spaces satisfying the various assumptions used in these papers. For
instance, it would be interesting to provide other examples of spaces S, satisfy-
ing Assumptions 1 and 2. It would also be interesting to see if a modification of
the uniform partition of unity can give, by restriction, spaces S, satisfying these
Assumptions. Finally, it would be important to integrate our results with the is-
sues arising from numerical integration and to provide explicit numerical examples
testing our results.

Some numerical tests and related theoretical results can be found, for example,
in [7] and [21].
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